13,437 research outputs found

    Dual clearance squeeze film damper

    Get PDF
    A dual clearance hydrodynamic liquid squeeze film damper for a gas turbine engine is described. Under normal operating conditions, the device functions as a conventional squeeze film damper, using only one of its oil films. When an unbalance reaches abusive levels, as may occur with a blade loss or foreign object damage, a second, larger clearance film becomes active, controlling vibration amplitudes in a near optimum manner until the engine can be safely shut down and repaired

    Dual clearance squeeze film damper for high load conditions

    Get PDF
    Squeeze film dampers are widely used to control vibrations in aircraft turbine engines and other rotating machinery. However, if shaft unbalance rises appreciably above the design value (e.g., due to a turbine blade loss), a conventional squeeze film becomes overloaded, and is no longer effective in controlling vibration amplitudes and bearing forces. A damper concept characterized by two oil films is described. Under normal conditions, only one low-clearance film is active, allowing precise location of the shaft centerline. Under high unbalance conditions, both films are active, controlling shaft vibration in a near-optimum manner, and allowing continued operation until a safe shutdown can be made

    High stiffness seals for rotor critical speed control

    Get PDF
    An annular seal is analyzed in which the inlet clearance is larger than the outlet clearance; the flow path may be either stepped or tapered. This design produces radial stiffness 1.7 to 14 times that of a constant clearance seal having the same minimum clearance. When sealing high pressure fluids, such a seal improves rotor stability and can be used to shift troublesome critical speeds to a more suitable location

    Experimental stiffness of tapered bore seals

    Get PDF
    The stiffness of tapered-bore ring seals was measured with air as the sealed fluid. Static stiffness agreed fairly well with results of a previous analysis. Cross-coupled stiffness due to shaft rotation was much less than predicted. It is suggested that part of the disparity may be due to simplifying assumptions in the analysis; however, these do not appear to account for the entire difference observed

    Damping in ring seals for compressible fluids

    Get PDF
    An analysis is presented to calculate damping in ring seals for a compressible fluid. Results show that damping in tapered ring seals (optimized for stiffness) is less than that in straight bore ring seals for the same minimum clearance. Damping in ring seals can promote fractional frequency whirl and can, thus, be detrimental. Thus, tapered seals can benefit rotor and seal stability by having lower damping as well as higher stiffness. Use of incompressible results leads to large errors

    Design curves for optimizing stability of herringbone-grooved journal bearings

    Get PDF
    Curves span wide range of operating conditions, including: lubricant compressibility numbers from 0 to 80, bearing length-to-diameter ratios from 1/4 to 2, and either rotating or stationary grooved members

    Quasi-modal vibration control by means of active control bearings

    Get PDF
    This paper investigates a design method of an active control bearing system with only velocity feedback. The study provides a new quasi-modal control method for a control system design of an active control bearing system in which feedback coefficients are determined on the basis of a modal analysis. Although the number of sensors and actuators is small, this quasi-modal control method produces a control effect close to an ideal modal control

    Optimization of self-acting herringbone-grooved journal bearings for maximum stability

    Get PDF
    Groove parameters were determined to maximize the stability of herringbone-grooved journal bearings. Parameters optimized were groove depth, width, length, and angle. Optimization was performed by using a small-eccentricity, infinite-groove analysis in conjunction with a previously developed Newton-Raphson procedure for bearings with the smooth member rotating or with the grooved member rotating at low compressibility numbers, and a newly developed vector technique for bearings with the grooved member rotating at high compressibility numbers. The design curves in this report enable one to choose the optimum bearing for a wide range of operating conditions. Compared with bearings optimized to maximize load capacity, bearings optimized for stability allow a thousandfold increase in bearing-supported mass in some cases before onset of instability, and lose no more than 77 percent of their load capacity in any case studied. Stability is much greater when the grooved member rotates

    Optimization of self-acting herringbone journal bearing for maximum stability

    Get PDF
    Groove parameters were determined to maximize the stability of herringbone grooved journal bearings. Parameters optimized were groove depth, width, length, and angle. Optimization was performed using a small eccentricity, infinite groove analysis in conjunction with: (1) a previously developed Newton-Raphson procedure for bearings with the smooth member rotating or with the grooved member rotating at low compressibility numbers, and (2) a newly-developed vector technique for bearings with the grooved member rotating at high compressibility numbers. The design curves enable one to choose the optimum bearing for a wide range of operating conditions. These include: (1) compressibility numbers from 0 (incompressible) to 80, (2) length to diameter ratios from 1/4 to 2, and (3) smooth or grooved member rotating. Compared to bearings optimized to maximize load capacity, bearings optimized for stability: (1) allow a thousandfold increase in bearing-supported mass in some cases before onset of instability (the most dramatic increase are for bearings with small L/D operating at high compressibility numbers), and (2) lose no more than 77-percent of their load capacity in any case studied. Stability is much greater when the grooved member rotates

    Magnetic bearings for free-piston Stirling engines

    Get PDF
    The feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery currently being developed for long-term space missions are assessed. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) which currently uses hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Active magnetic bearings of the attractive electromagnetic type are feasible for the RSSPC power piston. Magnetic support of the displacer assembly would require unacceptable changes to the design of the current RSSPC. However, magnetic suspension of both displacer and power piston is feasible for a relative-displacer version of the RSSPC. Magnetic suspension of the RSSPC power piston can potentially increase overall efficiency by 0.5 to 1 percent (0.1 to 0.3 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. These advantages, however, are accompanied by a 5 percent increase in specific mass of the RSSPC
    corecore